
Static Taint Analysis Method for Intent
Injection Vulnerability in Android Applications

Bin Xiong1, Guangli Xiang1(B), Tianyu Du2, Jing (Selena) He3,
and Shouling Ji2

1 College of Computer Science and Technology,
Wuhan University of Technology, Wuhan, China
13072799038@163.com, glxiang@whut.edu.cn

2 College of Computer Science and Technology,
Zhejiang University, Hangzhou, China
tydusky@gmail.com, sji@zju.edu.cn

3 Department of Computer Science, Kennesaw State University,
Marietta, GA 30060, USA

jhe4@kennesaw.edu

Abstract. In the component communication of Android application,
the risk that Intent can be constructed by attackers may result in mali-
cious component injection. To solve this problem, we develop IntentSoot,
a prototype for detecting Intent injection vulnerability in both public
components and private components for Android applications based on
static taint analysis. It first builds call graph and control flow graph
of Android application, and then tracks the taint propagation within a
component, between components and during the reflection call to detect
the potential Intent injection vulnerability. Experimental results validate
the effectiveness of IntentSoot in various kinds of applications.

Keywords: Static taint analysis · Call graph · Control flow graph ·
Intent injection vulnerability

1 Introduction

With the growing momentum of the Android operating system, thousands of
applications (also called apps) emerge every day on the official Android mar-
ket (Google Play) and other alternative markets. In the second quarter of 2016,
Android devices occupied 86.2% of total sales on mobile operating system, and
2600 thousand apps have been installed from Google Play store in December
2016. Due to the fact that many application developers have poor security aware-
ness and application markets do not take comprehensive security testing mea-
sures, there are various security vulnerabilities in a large number of applications,
which brings security risks to users.

In order to enhance application security, each application is assigned a user
ID (UID) and runs in an isolated virtual machine. However, applications need
to share data with others in a collaborative environment, so Android provides a
c© Springer International Publishing AG 2017
S. Wen et al. (Eds.): CSS 2017, LNCS 10581, pp. 16–31, 2017.
https://doi.org/10.1007/978-3-319-69471-9_2

Static Taint Analysis Method for IIV in Android Applications 17

flexible communication mechanism named Inter-Process Communication (IPC),
which takes place in Binder or Intent [11]. Among them, Intent can transfer mes-
sages between the same or different application components as a message con-
tainer (including action, data, type, extras and other properties), which achieves
Inter Component Communication (ICC). A large number of studies have shown
that the introduction of ICC mechanism will expose applications to a variety
of external stressful conditions, and therefore applications is likely to receive
a large number of untrusted data, which causes security vulnerabilities. Intent
injection is an ICC application vulnerability. Generally, the application with
an intent injection contains a public component. The application can receive a
malicious intent message. Intent injection vulnerability is a relatively common
ICC vulnerability. Applications with this type of vulnerability typically contain
a public component. After the application receives a maliciously constructed
Intent message, it does not perform valid security authentication and directly
parses out the parameters for some security-sensitive operations, resulting in
malicious behaviors such as privilege elevation, information leakage, and even
remote code execution.
Related Work. Methods for detecting Intent injection vulnerability can be
roughly divided into two kinds, including dynamic analysis and static analysis
[14]. Dynamic analysis sends random input to the target application to identify
potential vulnerabilities by monitoring software anomalies. JarJarBink modified
the ICC parameters according to a custom variation strategy and sent them to
the target application component to evaluate the ICC [7]. Intent Fuzzer used a
new method combined with static analysis and test case generation [10]. For all
the public components of the application, the data structure of Intent is obtained
by static analysis, and then the corresponding fields are randomly changed. Com-
pared with JarJarBinks, Intent Fuzzer can detect exceptions from deeper logic
of code segments. However, it is difficult for the Fuzzing method to find available
vulnerabilities along with a lot of empty pointer exceptions. Without running
the practical application, static analysis directly analyzes Dalvik bytecode of the
application and extracts potential malicious behaviors. ComDroid [1] used static
analysis to detect ICC problems, but they believed that as long as the compo-
nent is exposed and there is no privilege protection, there are Intent injection
attacks. This coarse-grained analysis method will lead to a quantity of false
positives. CHEX found data flow between application components by connect-
ing all the code segments from the entry point to detect component hijacking
vulnerabilities [6]. However, due to the absence of data flow analysis between
components, they cannot detect the injection of private components, leading
to false negatives. Epicc [8] transformed the ICC issue to an IDE problem [9],
but there are still a lot of false positives. At the Blackhat conference in 2014,
Daniele proposed a static detection approach for Intent message vulnerabilities
in Android applications [7], but it only detects vulnerabilities in a single Activ-
ity component, which exists false negatives. Recently, IccTA proposed a static
detection method for ICC problems [4,5], which can be modified to directly con-
nect components but cannot detect the vulnerability during reflection calls. Since

18 B. Xiong et al.

component exposure does not imply the presence of Intent injection and Intent
injection exists not only in public components, the above-mentioned studies is
common in false positives or false negatives and cannot effectively analyze the
dynamic loading as well as reflection mechanism in Android.
Our Contribution. In this paper, we present IntentSoot, a prototype to effec-
tively detect the Intent injection vulnerability in Android applications based on
static taint analysis. By defining the Intent message as a taint source and track-
ing the propagation of taint data within a component, IntentSoot can effectively
reduce the number of false positives and false negatives between components
and during reflection calls.
Roadmap. The rest of this paper is organized as follows. Section 2 introduces
the communication process security analysis in Android applications. Section 3
presents the overall structure of IntentSoot. Section 4 details the principles of
IntentSoot. Section 5 shows the datasets and experimental results. Section 6 con-
cludes the paper.

2 Communication Process Security Analysis in Android
Application

2.1 Component Communication Mechanism

Android applications have four types of components, including Activity, Service,
BroadcastReceiver and ContentProvider. Except ContentProvider, the commu-
nication between the other three components requires an Intent message. Intent
is a media for ICC process to convey messages. Intent contains both the explicit
and the implicit, among which explicit Intent specifies the receiving component
by name, so the Intent is sent to a particular application component. However,
implicit Intent’s receiver can be all components that meet the conditions, and the
Android system determines which application can receive the Intent. Intent-filter
tag can be added to a component in AndroidManifest file, thus receiving differ-
ent Intent by defining action, category and data. In addition, all components
that have the intent-filter tag and do not have the attribute “exported” valued
false are public by default, and other applications can send Intent messages to
public components.

2.2 Intent Injection Vulnerability in Application Communication
Process

The Intent injection vulnerability was proposed in literature [2] at the first time,
and an application with such vulnerability typically has a public component that
can receive external Intent messages. The logic of internal processing in appli-
cation directly uses the parameter information parsed from the Intent message
for some security-sensitive operations without validation. If the Intent message
is carefully constructed by the attacker, it will cause Intent injection. The threat
model of Intent injection contains two roles, including attackers and victims, as
shown in Fig. 1.

Static Taint Analysis Method for IIV in Android Applications 19

Fig. 1. Threat model for Intent injection attack

2.3 Intent Injection Example

Intent injection vulnerability means that, the taint data may not only flow within
a component and between components in the process of taint data propagation,
but also flow during the refection calls, as shown in Listing 1.1. Assuming that
doSomethingBad1 and doSomethingBad2 are two security-sensitive API func-
tions, then there are two Intent injection vulnerabilities in this example. The first
vulnerability exists in the public component Activity01, where the parameter s1
is passed directly to the method doSomethingBad1 without any security check.
The second vulnerability exists in the private component Activity02, where the
parameter s4 is passed to the method sendMSG in the class SendMessage, and
then passed to the method doSomethingBad2 without any security check. The
Next-Intent attack described in [13] utilized the Dropbox application’s private
components. The presence of the Intent injection vulnerability in the VideoPlay-
erActivity caused the leak of token information of a large quantity of Drophox
accounts. However, previous studies [1,3,6,8] were unable to detect Intent injec-
tion vulnerabilities in private components. Therefore, the purpose of this paper
is to develop a static analysis tool which can detect Intent injection vulnerabil-
ity in both public components and private components for Android applications
through the static taint analysis method.

3 Overall Design for IntentSoot

This section systematically introduces our tool named IntentSoot, whose overall
structure and flow chart is shown in Fig. 2. We make some definitions first to
facilitate further description.

– Source method: The method where the caller is located, is represented by
Sm. As shown in Listing 1.1, the onCreate method in Activity02 is a source
method.

– Source class: The class where the source function is located, is represented
by Sc.

– Target method: The called method, is represented by Tm. As shown in
Listing 1.1, the sendMSG method in SendMessage is a target method.

20 B. Xiong et al.

1 //Activity01
2 onCreate(Bunlde ...){...
3 Intent i1 = this.getIntent();
4 String s1 = i1.getData().getQueryParameter("key1"); //source
5 String s2 = i1.getStringExtra("key2"); //source
6 ...
7 doSomethingWith(s1);
8 Intent i2 = new Intent();
9 i2.setClass(..., BroadcastReceiver01.class);

10 i2.putExtra("key2", s2);
11 sendBroadcast(i2);
12 }
13 Public void doSomethingWith(String value){
14 doSomethingBad1(value);//sink
15 }
16 //BroadcastReceiver01
17 OnReceive(Context c, Intent i3){...
18 Intent i4 = new Intent(c, Activity02.class);
19 String s3 = i3.getStringExtra("key2");
20 I4.putExtra("key3",s3);
21 C.startActivity(i4);
22 }
23 //Activity02
24 onCreate(Bunlde){...
25 Intent i5 = getIntent();
26 String s4 = i5.getStringExtra("key3");
27 File file = new File("/adcard/DynamicLoadClient.apk");
28 if (file.exist()){
29 DexClassLoader cl = new DexClassLoader(file.toString(), ...);
30 try{
31 Class<?> myClass = cl.loadClass("com.dynamicloadclient.SendMessage");
32 Constructor<?> constructor = myClass.getConstructor(new Class[]{String.class});
33 Object object = constructor.newInstance(new Object[]{"MessageMark"});
34 Method action = myClass.getMethod("SendMSG", new Class[]{String.class});
35 action.invoke(object, s4);
36 } catch (Exception e) {
37 e.printStackTrace();
38 }
39 }
40 }
41 //SendMessage
42 public void sendMSG(String content){
43 doSomethingBad2(content);//sink
44 }

Listing 1.1. The Intent injection example for apps without reflection

– Target class: The class where the called function is located, is represented
by Tc. As shown in Listing 1.1, the SendMessage class is a target class.

– Reflection method: The method used by the caller to implement the reflec-
tion mechanism, including the newInstance and invoke methods, is repre-
sented by Rm. As shown in Listing 1.1, the newInstance method in line 33
and the invoke method in line 35 are reflection methods.

IntentSoot mainly consists of two parts: dynamic execution module
(IntentSoot-D) and static analysis module(IntentSoot-S).

IntenSoot first runs IntentSoot-D, installing the app into the Android device.
After installing the app, IntentSoot runs the app file and cyclically reads the
system’s log output to get information about the dynamic loading and reflection
calls. When capturing the dynamic loading behaviors, IntentSoot sends an adb
downloading command to the Android device, and then downloads the loaded

Static Taint Analysis Method for IIV in Android Applications 21

Fig. 2. Overall structure and flow chart of IntentSoot

dex file to the local computer. When capturing the reflection call behaviors,
IntentSoot extracts the information such as Sm, Rm and Tm corresponding to
the reflection call from the log, and stores the information in the form of a triple
group of <Sm, Rm, Tm> in the local computer’s file called SRT library. The
downloaded dex file and SRT library will be used for subsequent static taint
analysis.

When the dynamic execution module is finished, IntentSoot runs IntentSoot-
S. IntentSoot-S is actually an improvement version of Soot [12]. It makes up
Soot’s defects by adding the dynamic execution module outputs, namely dex file
and the SRT library, to static taint analysis. Meanwhile, the mapping table
between ICC method and lifecycle method of target component is supplied
to make up the defect that Soot cannot handle component communication.
IntentSoot-S consists of three stages, including preprocessing stage, intermediate
processing stage and taint analysis stage.

4 Principle Introduction for IntentSoot

4.1 Principle Introduction for IntentSoot-D

IntentSoot-D includes running the app, downloading the dex file to the local
computer and collecting a triple group <Sm, Rm, Tm> of reflection call infor-
mation into the SRT library. The downloaded dex files and the SRT library will
be used for subsequent static taint analysis.

4.1.1 The Modifications for Android Source Code
We modify the Android source code according to the literature [15], and the
modified Android version is 4.4. The main modifications include:

– The modification of elements stored in the method call stack. The
method call stack in the source code only stores the class name and method
name. In order to get complete information, we modified it to store parameters
and return values of the method.

22 B. Xiong et al.

– Increase the log output for dynamic loading. Modify the openDexFile
method in the DexFile.java file. Therefore, when dynamic loading behavior
occurs in the system, the system will output the path of the loaded dex file,
so that the loaded dex file can be downloaded by IntentSoot-D in time.

– Increase the log output of the newInstance method call. Mod-
ify the newInstance method in the Constructor.java file. Therefore, when
newInstance method call occurs in the system, it will output class name
of the instantiated target class, instantiated method name and instantiated
parameters.

– Increase the log output of the invoke method call. Modify the invoke
method in the Method.java file. Therefore, when invoke method call occurs
in the system, it will output class name of the target class, method name and
parameters of the target method.

The items 2-4 above corresponds to the log output, which includes not only
the descripted log output but also the additional output, including log ID, uid
number, operation number and call stack information, etc. The log ID is used
to identify which log information need to be parsed by IntentSoot-D. Through
the uid number, IntentSoot-D can identify which log output is generated by
the application. The operation number is used to identify the type of moni-
tored program behavior. According to the difference of called method, we set
the newInstance, invoke, openDexFile method corresponding to the number 1,
2, 3. In addition, the Android system outputs not only the log information of the
three items above but also the information of the Android method call stack in
the current thread, which will assist the IntentSoot-D to get the information of
source method and reflection method. The details will be described in Sect. 4.2.

Fig. 3. Schematic diagram of log analysis

Static Taint Analysis Method for IIV in Android Applications 23

4.1.2 Log Analysis
After installing and running the application, IntentSoot can get the app’s uid
number. The app’s running requires actual use, as well as triggering dynamic
loading and reflection call as much as possible. IntentSoot-D will cyclically read
the phone’s log information, extracting the log informations of the app according
to the uid. When reading a record of dynamically loading dex files, IntentSoot-D
downloads the dex file to the specified folder in the local computer. When cap-
turing the output information of the newInstance method or the invoke method,
the IntentSoot extracts the information of the corresponding source method Sm,
the reflection method Rm and the target method Tm, which will be stored in
<Sm, Rm, Tm>.

The extraction principle of the information is described in Fig. 3. We use Cx,
Mx, and Px to represent class name, method name and method parameter name,
respectively. X can be a value of s, r or t, representing the source, the reflection
and the target. For example, Cs represents the class name of the source class.
According to the modification in Sect. 4.1.1, we can get the information of Tm
directly from log when newInstance or invoke method is called. Similarly, we can
get the information about Sm and Rm through the Android method call stack in
current thread. The Android method call stack stores the method call sequence
from the current method call in chronological order. The method information
currently being called is stored on the top of the stack, and the last method
call from the current method call is stored on the second unit. Thus, when a
reflection method call occurs, the method at the top of the stack is usually the
information of the reflection method Rm, and the second unit in the stack is
the information of the source method Sm. According to the modification of the
elements stored in the method call stack of Android system in Sect. 4.1.1, we can
obtain the information of Sm, including Cs, Ms, Ps and the information of Rm,
including Cr, Mr, Pr through the output stack information when the reflection
method call occurs. Finally, IntentSoot-D will store Sm, Rm and Tm to the SRT
library in the form of a triple group.

4.2 Principle Introduction for IntentSoot-S

When the dynamic execution module is finished, IntentSoot runs IntentSoot-S.
First, the necessary Java class files in the apk file and in the dex file are loaded
into memory and converted into Soot’s internal representation–Jimple. Then the
reflection method is converted according to SRT library while the source point
is identified. Finally, IntentSoot builds correct CG and CFG and starts static
taint analysis.

4.2.1 Class Loading
Soot’s static analysis method is based on Soot’s Jimple language. Soot loads all
the classes contained in the apk file into memory, then builds the main method
and constructs the function call graph and the control flow graph. In order to
reduce the burden of memory, by using on-demand loading way, IntentSoot-S

24 B. Xiong et al.

1 $r14 = new array(java.lang.Object)[1]
2 $r14[0] = "MessageMark";
3 $r15 = virtualinvoke $r13.<java.lang.reflect.Constructor:java.lang.Object newInstance(

java.lang.Object[])>($r14);
4 ...
5 $r14 = new array(java.lang.Object)[1];
6 $r14[0] = $r7
7 $r5 = virtualinvoke $r15.<java.lang.reflect.Method:java.lang.Object invoke(java.lang.

Object, java.lang.Object)>($r5, $r14);

Listing 1.2. The Jimple code before the transformation of newInstance and invoke

loads the corresponding class in the loaded dex file. In other words, IntentSoot-S
only loads the source classes and the target classes in the SRT library. When
constructing the function call graph, Soot automatically loads the extra neces-
sary classes according to the extension of the function call graph. The target
method may exist either in the loaded dex file or in the class of the app or in the
Android system library named android.jar, and these possible files will serve as
the base class for Soot.

4.2.2 Modification Algorithm for Source Method
We first give the following definitions to facilitate the description of our
algorithm.

– Target reflection object. The object of instantiating the target class
through reflection mechanism, is represented by Fo, such as the “object”
object that is shown in the 33rd line of Listing 1.1.

– Target object. The object of directly instantiating target class, is repre-
sented by To.

– Target reflection parameter. The parameter that is passed to the target
method through the reflection mechanism, is represented by Fp, such as the
$r14 array shown in the third line and seventh line of Listing 1.2.

– Reflection object. The object of instantiating reflection class, is represented
by Ro, such as the “constructor” object in 32nd line and the “action” object
in the 34th line of Listing 1.1.

An algorithm flow chart for specific source method modification is shown
in Fig. 4. For SRT mapping, IntentSoot-S first judges whether the reflection
method is newInstance or invoke method. For the invoke method, IntentSoot-S
first transforms the target reflection parameter Fp into the target parameter
Tp, then determines whether the target reflection object is empty. If it is empty,
IntentSoot constructs a static target method call. If it is not empty, IntentSoot-
S defines the object To of the target class type, and casts the target reflection
object Fo to To, finally executes a non-static method call. The newInstance
method contains two types of parameters and no parameters. For the newIn-
stance method with parameters, IntentSoot-S first defines and creates a target
object To, then casts the target reflection parameter Fp to the target parameter
Tp, invokes the target method Tm (init ()) and instantiates it, finally reassigns
the To object to the original target reflection object Fo to ensure that Fo is

Static Taint Analysis Method for IIV in Android Applications 25

1 $r14 = new array(java.lang.Object)[1]
2 $r14[0] = "MessageMark";
3 $i1 = 0;
4 if $i1==0 goto label08;
5 $r18 = new com.dynamicloadclient.SendMessage;
6 special invoke $r18.<com.dynamicloadclient.SendMessage:void<init>(java.lang.String)>("

SendMessage");
7 $r5 = $r18;
8 goto label09;
9 label08:

10 $r5 = virtualinvoke $r13.<java.lang.reflect.Constructor:java.lang.Object newInstance(
java.lang.Object[])>($r14);

11 label09:
12 ...
13 $r14 = new array(java.lang.Object)[1];
14 $r14[0] = $r7
15 $i0 = 0;
16 if $i0==0 goto label14;
17 $r17 = (com.dynamicloadclient.SendMessage)$r5;
18 $r5 = virtualinvoke $r17.<java.lang.reflect.Method:java.lang.Object invoke(java.lang.

Object, java.lang.Object)>($r5, $r14);
19 goto label15;
20 label14:
21 $r5 = virualinvoke $r15.<java.lang.reflect. Method:java.lang.Object invoke(java.lang.

Object, java.lang.Object)>($r5, $r14);
22 label15:

Listing 1.3. The Jimple code after the transformation of newInstance and invoke

passed normally in the program. The source code of the 33rd and 35th line in
Listing 1.1 corresponds to the Jimple code in Listing 1.2. Listing 1.3 shows the
result of the modified source method in Listing 1.2.

4.2.3 Source and Sink Definitions
IntentSoot uses the static taint analysis method to detect the sensitive operation
(Sink) by marking the untrusted input data (Source) and statically tracking the
propagation path of the taint data. The Source and Sink are defined as follows.

– Source method: the GET method of the Intent object that is used to extract
information about the Data and Extras fields, such as getStringExtra(), get-
Data() and so on.

– Sink method: some security-sensitive operations that are related to the API,
such as the page loading-loadUrl(), the command execution-Runtime.exec(),
the database query-query() and so on.

4.2.4 Build CG and CFG
CG is a directed graph, of which the nodes represent the functions and the edges
represent call points. In order to build a function call graph, IntentSoot needs
to determine the entry function of the program first. However, in the lifecycle
management of the components in Android, one of the lifecycle methods (e.g.,
onCreate) is likely to be the entry function of the program.

Since Intent injection vulnerability detection focuses primarily on the deliv-
ery of external Intent messages, when a public component receives an Intent
message, the extraction of Intent object fields information is usually done in a

26 B. Xiong et al.

Fig. 4. Algorithm flow chart of modifying source method

specific lifecycle method. According to this feature, we defined the correspon-
dence between different component types and the component entry methods, as
listed in Table 1. IntentSoot selects the corresponding component entry method
as the entry point of the CG and then analyzes all the function call statements
from the CG entry.

CFG is also a directed graph. The nodes in CFG are basic blocks, and the
edges in the graph represent the conditional information from one basic block
to another basic block. IntentSoot traverses all nodes through Depth-first search
algorithm and then generates a CFG for each function in CG.

4.3 Static Taint Analysis

Static taint analysis is based on the constructed CG and CFG, including the
taint data trace within a component and between the components.

Static Taint Analysis Method for IIV in Android Applications 27

Table 1. Component entry method

Component type Component entry method

Activity void OnCreate(BundlesavedlnstanceState);

Service void OnBind();
void OnStartCommand();

BroadcastReceiver void OnReceive();

4.3.1 The Taint Data Trace Within a Component
When the taint data within a component is tracked, IntentSoot identifies the
relevant fields information of the Intent object as the taint source, then performs
the taint data trace in program analysis to detect whether the taint data flows
into Sink method. The taint analysis are analyzed from the entry point of the
CG, traversing the CFG of each function. When the method call is encountered,
IntentSoot analyzes the taint data propagation in the method call through the
binding relationship between formal parameters and actual parameters.

4.3.2 The Taint Data Trace Between the Components
If the method call is an ICC method and its parameter Intent is taint data,
it is necessary to track the propagation of the taint information between the
components. As shown in the example application of Listing 1.1, when the pro-
gram is analyzed into the sendBroadcast method in component Activity01, it
is necessary to track the propagation of the taint data between components
and then continue the taint analysis within the BroadcastReceiver01 component
since parameter i2 is the taint data. It is also necessary to track the propaga-
tion of taint information between the BroadcastReceiver01 component and the
Activity02 component. However, the fact that communication between compo-
nents is performed by the operating system results in discontinuities of control
flow graph between components, as shown in Fig. 5. There are no explicit call
process between the sendBroadcast method of the Activity01 component and
the onReceive method of the BroadcastReceiver01 component, so static analysis
cannot track the data flow information between components.

Fig. 5. ICC control flow for example application

28 B. Xiong et al.

To achieve the taint data trace between the components, IntentSoot should
first determine the target components. When analyzing the ICC method, we
can parse the Intent or the AndroidManifest.xml file to determine the target
component. When the target component is determined, IntentSoot achieves the
continuity of control flow and data flow between components by constructing a
mapping table between the ICC methods and the lifecycle methods, as listed in
Table 2. When an ICC method is invoked, it is automatically replaced with the
corresponding lifecycle method, and the Intent is passed to the corresponding
method for taint data trace.

Table 2. Mapping table between ICC methods and lifecycle methods of target
component

Target
component type

ICC method Lifecycle method Intent information
pass

Activity startActivity(Intent i)
startActivityForResult(Intent i,· · ·)

OnCreate(Bundle · · ·) i→getIntent()

Service startService(Intent i)
bindService(Intent i,· · ·)

OnStartCommand(Intent
intent,· · ·)
OnBind(Intent intent)

i→Intent
i→Intent

Broadcast
receiver

sendBroadcast(Intent i)
sendBroadcast(Intent i,· · ·)
sendOrderedBroadcast(Intent i, · · ·)
sendOrderedBroadcast(Intent i,· · ·)
sendStickyBroadcast(Intent i)
sendStickyOrderedBroadcast(Intent i,· · ·)

OnReceive(· · · , Intent
intent)

i→Intent

4.3.3 Vulnerability Detection
Intent injection vulnerability detection occurs in the process of tracking taint.
When IntentSoot analyzes the internal Jimple statement, if the current state-
ment contains a function call, IntentSoot will first determine whether the method
is in the defined list of the Sink methods. If so, it further determines whether
the relevant parameters are taint data. If so, it means there is a potential Intent
injection vulnerability. Then data dependence graph of the parameters is gener-
ated, according to which the path of taint trace from the Source to the Sink is
recorded.

5 Experimental Results

5.1 Experimental Environment

The experimental platform is 64-bit Ubuntu 14.04 operating system. The number
of processor is 6. The frequency of CPU is 2.50 GHZ. The size of physical memory
is 6 GB. We selects two sample sets that include the standard test application
and the third party application to conduct experiments.

5.2 Contrast Test

In order to evaluate the performance of IntentSoot, we designed five types of
standard test applications that contain public component C1, private component
C2 and reflection calls, as listed in Table 3.

Static Taint Analysis Method for IIV in Android Applications 29

Table 3. Five types of standard test applications

Application
type

Public component C1 Private
component
C2

Reflection
call

Whether
exists Intent
vulnerability

Intent
Soot

Epicc Average
analysis time

A exist source and sink - - yes
√ √

51/65

B exist source sink - yes
√

missed positives 52/56

C exist source - sink yes
√

missed positives 54/61

D no source - - no
√

false positives 12/45

E exist source, no sink - - no
√

false positives 46/51

In this experiment, IntentSoot and Epicc were used to analyze the five types
of standard applications. Experimental results are shown in Table 3. We can find
that Epicc can only detect C-type applications, while IntentSoot can correctly
detect all five kinds of applications in terms of detection capability. Since Epicc
supposed that there are Intent injection vulnerabilities in all public components,
it didn’t perform fine-grained analysis for applications. In addition, the average
analysis time of IntentSoot is significantly less than Epicc, because IntentSoot
analyzes only the public components in the application and the private compo-
nents on demand, not handling the code of event response function in the process
of handling a single component. However, Epicc needs to analyze all the com-
ponents and all the code within a single component, causing large performance
overhead.

5.3 Function Test

We not only analyzed the standard test applications but also collected 60 appli-
cations of 10M from third party application market (HiMarket) as test sam-
ples, including security management applications, social applications and mobile
shopping applications. We found that seven test samples have the path from the
Source to Sink. We manually created an exploit trigger to prove that there are
indeed Intent injection vulnerabilities, and the test results are listed in Table 4.
From the table, we can find that there are a large number of public components
in each application. Furthermore, there are Intent injection vulnerabilities in a
public component of sample1. The public component can load any page, and
the WebView implements the addJavaScriptInterface interface, therefore it can
embed the JavaScript code to execute remote command. Sink points in Sample3
occur in private components, so IntentSoot requires taint data trace between
components. In addition, the number of public components in Sample6 is 11,
and the analysis time of Sample6 is significantly more than any other applica-
tions, mainly because the code of each public component in Sample6 is much
more complex than any other applications, and there may be codes such as
reflection calls.

30 B. Xiong et al.

Table 4. Detection results for third party application vulnerability

Sample Public component
numbers/Total
component numbers

Sink type Within
components/Between
components

Analysis time (s)

Sample1 7/43 Open the web page (Can
execute remote commands)

Within components 93

Sample2 8/63 Execute remote commands Within components 111

Sample3 13/51 Open the web page Between components 187

Sample4 8/52 Write the specified file Within components 109

Sample5 8/49 Modify the database Within components 55

Sample6 11/63 Send a text message to the
specified number

Within components 257

Sample7 13/72 Modify the database Within components 172

6 Conclusion

We proposed IntentSoot, a prototype for detecting Intent injection vulnerability
of Android application based on static taint analysis, which considers the taint
data trace within a component, between the components and during reflection
calls. Compared with previous detection methods, experimental results shows
that IntentSoot can effectively reduce false positives and false negatives while
reducing performance overhead through only focusing on code snippets from the
outside application’s Intent message processing. However, IntentSoot does not
consider taint propagations of JNI call in the program code, which we will study
in the future.

Acknowledgments. This work was partly supported by NSFC under No. 61772466,
the Provincial Key Research and Development Program of Zhejiang, China under
No. 2017C01055, the Fundamental Research Funds for the Central Universities,
the Alibaba-Zhejiang University Joint Research Institute for Frontier Technologies
(A.Z.F.T.) under Program No. XT622017000118, and the CCF-Tencent Open Research
Fund under No. AGR20160109.

References

1. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: International Conference on Mobile Systems, pp. 239–
252. ACM (2011)

2. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: USENIX Security, vol. 2, p. 21 (2011)

3. Gallingani, D.: Static detection and automatic exploitation of intent message vul-
nerabilities in android applications (2014)

4. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., McDaniel, P.: IccTA: detecting inter-component privacy
leaks in android apps. In: International Conference on Software Engineering, vol.
1, pp. 280–291. IEEE (2015)

5. Li, L., Bartel, A., Klein, J., Traon, Y.L., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D., Mcdaniel, P.: I know what leaked in your pocket: uncovering privacy
leaks on android apps with static taint analysis. Computer Science (2014)

Static Taint Analysis Method for IIV in Android Applications 31

6. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: Chex: statically vetting android apps
for component hijacking vulnerabilities. In: ACM Conference on Computer and
Communications Security, pp. 229–240. ACM (2012)

7. Maji, A.K., Arshad, F.A., Bagchi, S., Rellermeyer, J.S.: An empirical study
of the robustness of inter-component communication in android. In: The 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 1–12. IEEE (2012)

8. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon,
Y.: Effective inter-component communication mapping in android with epicc: an
essential step towards holistic security analysis. In: USENIX Security, pp. 543–558
(2013)

9. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1), 131–170 (1996)

10. Sasnauskas, R., Regehr, J.: Intent fuzzer: crafting intents of death. In: Joint Inter-
national Workshop on Dynamic Analysis, pp. 1–5. ACM (2014)

11. Singapati, S.: Inter process communication in android (2012). https://dspace.cc.
tut.fi/dpub/bitstream/handle/123456789/21105/singapati.pdf

12. Soot[eb/ol], G.: https://sable.github.io/soot/
13. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile

platforms: threats and mitigation. In: ACM SIGSAC Conference on Computer &
Communications Security, pp. 635–646. ACM (2013)

14. Yuqing, Z., Zhejun, F., Kai, W., Zhiqiang, W., Hongzhou, Y., Qixu, L.: Survey of
android vulnerability detection. Comput. Res. Dev. 52, 2167–2177 (2015)

15. Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., Massacci, F.: Sta-
dyna: addressing the problem of dynamic code updates in the security analysis of
android applications. In: ACM Conference on Data and Application Security and
Privacy, pp. 37–48. ACM (2015)

https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/21105/singapati.pdf
https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/21105/singapati.pdf
https://sable.github.io/soot/

	Static Taint Analysis Method for Intent Injection Vulnerability in Android Applications
	1 Introduction
	2 Communication Process Security Analysis in Android Application
	2.1 Component Communication Mechanism
	2.2 Intent Injection Vulnerability in Application Communication Process
	2.3 Intent Injection Example

	3 Overall Design for IntentSoot
	4 Principle Introduction for IntentSoot
	4.1 Principle Introduction for IntentSoot-D
	4.2 Principle Introduction for IntentSoot-S
	4.3 Static Taint Analysis

	5 Experimental Results
	5.1 Experimental Environment
	5.2 Contrast Test
	5.3 Function Test

	6 Conclusion
	References

